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The feasibility of using inertial instruments to determine the pointing attitude

of NASA's Deep Space Network antennas is examined. The objective is to obtain

1-mdeg pointing knowledge in both blind pointing and tracking modes to facilitate

operation of the Deep Space Network 70-m antennas at 32 GHz. A measurement
system employing accelerometers, an inclinometer, and optical gyroscopes is pro-

posed. Tile initial pointing attitude is established by determining the direction

of the local gravity vector using the accelerometers and the inclinometer, and the
Earth's spin axis using the gyroscopes. Pointing during long-term tracking is main-

rained by integrating the gyroscope rates and augmenting these measurements with

knowledge of the local gravity vector. A minimum-variance estimator is used to
combine measurements to obtain the antenna pointing attitude. A key feature of

the algorithm is its ability to recalibrate accelerometer parameters during operation.

A survey of available inertial instrument technologies is also given.

I. Introduction

Currently, the Deep Space Network (DSN) antennas

are pointed using either precision angle encoders mounted

at the reflector azimuth and elevation axes, or a Master

Equatorial (ME), which optically determines the angu-
lar difference between the antenna and a mirror, which

is normal to the boresight and attached to an intermedi-

ate reference structure (IILS) on the back side of tile pri-
mary reflector. The ME is more accurate than the angle

encoders; thus the 70-m antennas, which have the most

stringent pointing requirements, use MEs. The smaller
26- and 34-m antennas, which have less stringent pointing

requirements than the 70-m antennas, rely solely on the

angle encoders. Even if the encoders or ME were error-
free, there would still be pointing errors arising from un-

certainty in the modeling of the IRS, caused by gravity,

wind, and thermal effects, as well as by parameter errors,
nonlinearities, and model truncation. For example, wind

and gravity distort the antenna dish-bearing structures as
well as the ME tower itself, which causes errors in the vir-

tual reference plane on the dish relative to the ME mirror
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plane and thereby alters the antenna boresight. A strat-

egy has been proposed and analyzed [1] which uses the

Spatial High Accuracy Position Encoding Sensor

(SHAPES) developed at the Jet Propulsion Laboratory
(JPL) to measure distortion in the antenna dish. When

combined with a maximum-likelihood estimator, the
method can be used to determine the best-fit antenna

boresight. However, this sensor still has to be referenced

to a known and stable reference plane. There are approx-

imately 25 ft of structure between the ME and the front

surface of the 70-m antenna, and translation of a pointing
attitude at the ME to a pointing attitude at the reflec-

tor surface requires an accurate model of this connecting
structure, which does not exist. Presently, gravity-induced

sag, systematic component errors, and misalignments are

largely removed while other structural effects are treated

as random errors and are left uncompensated.

The current study was undertaken to investigate the
feasibility of using an inertial pointing system to achieve

pointing and tracking performance consistent with opera-

tion of the 70-m antennas at 32 GHz. The system would

ideally function as a "black box" that outputs pointing at-

titude upon request. It would be mounted unobtrusively
close to the front surface of the main antenna reflector

(Fig. 1). This location would eliminate the error intro-
duced by uncertainty in the model of the structure between

the ME and the antenna surface, and would provide an an-

tenna pointing reference that can be used to steer the an-

tenna or from which SHAPES or another surface-sensing

sensor could measure. The system would be required to
operate in real time and provide capabilities for both blind

pointing and precision tracking. A pointing-vector sensing
accuracy of 1 mdeg root mean square (rms) or better over

a 10-hr tracking period is used as a performance target in

the study and serves as the basis for sorting out the po-
tential inertial instrument candidates. This performance

requirement is driven by the narrow radio-frequency beam

resulting from 32-GHz operation of the 70-m antennas.

Additional factors that were considered include reliability,
maintenance requirements, and instrument cost.

Tile investigation includes both tile development and

analysis of concepts for determining pointing attitude and
an assessment of state-of-the-art instruments. Critical is-

sues include attitude initialization and on-line compensa-

tion for pointing system errors throughout antenna track-

ing periods. It was recognized at the onset of the study

that the requirements could not be met easily with the

available instruments. However, by using multiple in-

strument arrays, common-mode rejection, and parameter-

estimation processing algorithms in real time, the instru-

ment deficiencies are largely overcome, particularly in the

determination of the elevation attitude. Simulation results

using representative instrument parameters are analyzed

to illustrate the type of performance one might expect us-

ing currently available instruments operating in a DSN
antenna environment.

II. Concept Overview

The proposed instrument to effect the pointing func-

tions combines three single-axis gyroscopes in a three-axis

configuration (Fig. 2), four accelerometers (Fig. 3), and an

inclinometer. The gyroscopes are arranged with their sen-

sitive axes aligned along three mutually orthogonal axes,

with one gyroscope nominally along the antenna boresight
axis and the other two perpendicular to this. The ac-

celerometers are configured as a plane array perpendicular
to the antenna elevation axis and with their sensitive axes

oriented at right angles to one another. The inclinome-

ter is mounted such that it is sensitive to any tilt from
horizontal of the antenna elevation axis.

The gyroscopes constitute the most important part of

the inertial instrument. Gyroscopes measure either angu-

lar rate in an inertial frame of reference or the integral
of this rate; thus their outputs can be integrated to track
any change in antenna attitude due to movement from a_

initial position. However, due to instrument errors, the ac-
curacy of the computed attitude degrades with time, and

the gyroscopes must occasionally be recalibrated against

a known reference. This can be done, for example, imme-
diately before a tracking sequence.

The proposed scenario for determining the absolute an-
tenna attitude for gyroscope initialization involves deter-

ruination of the direction of the local gravity vector an,
the Earth's spin axis in the antenna local coordinate frarre

The gravity vector is determined using the accelerometers
and the inclinometer. The accelerometers measure the

component of gravitational acceleration along their sen-
sitive axes, which varies according to the elevation angle

of the antenna. The inclinometer directly measures the tilt

of the elevation axis. The direction of the Earth's spin vec-
tor is determined by clamping the antenna's elevation and
azimuth axes. With the antenna fixed in the Earth local

reference frame, the only remaining angular rate is that of

the Earth, which is observed in the gyroscope outputs.

The instrument is configured as a strapdown system

in a single assembly, i.e., the individual components are

rigidly attached to a holding fixture, which in turn is se-
curely attached to the antenna dish and moves with it. The

alternative to a strapdown system is one that is mounted
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on an inertially stabilized platform. This alternative con-

figuration can offer added accuracy but was not seriously
considered because of its far greater expense, complexity,

and maintenance requirements.

III. Theory

A. Elevation Determination

The following describes the principle of operation for

determining the elevation using the accelerometers. An ac-
celerometer measures the component of acceleration along
its sensitive axis and is insensitive to cross-axis acceler-

ations (within limits). This principle can be applied to
determine its orientation relative to a local gravity vec-

tor, from which an inertial geocentric vertical can be ob-

tained. For example, the ideal accelerometer in a gravita-

tional field shown in Fig. 4 would have as its output

Y = g sin (0) (1)

which can be inverted to yield the elevation angle

0_-sin-l(y) (2)

Here, y is the accelerometer output, g is the local ac-
celeration of gravity, and 0 is the angle between the ac-
celerometer and local horizontal. An advantage of us-

ing accelerometers for elevation measurement is that they
have a wide range of motion; since many high-quality ac-

celerometers are capable of measuring greater than +1 g,

the effective range for angle measurement is 4-90 deg. A

second advantage is that they can be relatively inexpen-
sive, so that several may be used in an inertial measure-

ment system to provide maximum sensitivity and measure-
ment redundancy, with little impact on total cost.

The inclinometer is used to determine how far the ac-

celerometer array deviates from vertical. An inclinometer

is a device that directly measures an angle with high ac-

curacy but may have a limited range. This prevents them

from being used as alternatives to the accelerometers. In

the following analysis, the inclinometer is ignored and the
elevation axis is assumed to lie within the horizontal plane.

To include the effect of the tilt of the elevation axis would

obscure the analysis while not fundamentally changing the

algorithms.

The outputs from the four accelerometers shown in

Fig. 3 can be written as

Yl = (_1 + (1 + _l)g sin(0) + vl (3)

Y2 : (_2 + (1 + D2)g cos(0) + v2 (4)

Y3 = c_3 - (1 + fl3)g sin(0) + u3 (5)

Y4 = a4 - (1 +/34)9 cos(0) + u4 (6)

Here, 0 is the antenna elevation angle, yi is the output

signal, ai is the bias, /3i is the gain factor, and vi is the
error associated with the ith accelerometer. For the mo-

ment, it is assumed that the biases and gains are known

quantities, obtained from calibration of the individual ac-
celerometers.

Equations (3) through (6) can be conveniently repre-

sented as the single symbolic vector equation

y=h(O)+v (7)

where y, h, and v are 4x 1 vectors with obvious connections

to the terms in Eqs. (3) through (6).

Since there are four equations but only one unknown,

the system is overdetermined. Accordingly, a minimum-
variance estimator is used to determine the elevation angle.

It may be assumed, for lack of better knowledge of the
error distribution, that the errors vi are zero mean and

uncorrelated, and have variances given by cq 2. Then the
covariance R of the measurement error vector v is given

al 0 0 0 1
i a2 0 0

R = E(vv T) = (S)
0 a32 0

0 0 cr42

by

The minimum-variance estimate 0 of the elevation angle

0 minimizes the cost functional

1
J = _(y- h(o))TR -l(y- h(O)) (9)

which amounts to weighting each of Eqs. (3) through (6)

according to its expected error variance. Calculus of vari-
ations yields the necessary condition

Oh T -1
(-_) R (y-h(O))=Oat 0=/_ (10)

Unfortunately, Eq. (10) is nonlinear and cannot easily be

solved directly. To make the problem tractable, the equa-
tion is linearized about a close solution 00 as
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Oh(Oo)
h(o) h(Oo)+ (0 - 0o) (11)

Substituting for the four-vector, given by

n(Oo) - Oh(Oo)
00 (12)

the minimum-variance estimate is obtained, after some al-

gebra:

0 _ Oo + (tt(Oo)TR-1fI(Oo))-IHT(Oo)R -1 (y - h(Oo))

(13)

Owing to the linear approximation used in the estima-

tor, accuracy is assured only in a small neighborhood of

the true elevation angle 0, and so the initial guess 00 must

be "close" to the true angle, or at least close to the esti-
mate 0, since 0 is unknown. One way to insure this is to

apply the algorithm iteratively. Starting with an initial es-

timate 00 for the elevation angle (obtained from encoders
or prior knowledge about what 0 should be), h(O) is lin-

earized according to Eq. (12) to obtain H(Oo). Using this
quantity, Eq. (13) is used to obtain a better estimate for
the elevation angle. This in turn is used as the new start-

ing estimate for the algorithm, and the process is repeated

until no further improvement is observed. In practice, the

algorithm has been observed to converge after several it-

erations, reflecting the slow rate of change of H(O) as a
function of angle 0.

It is possible to obtain an expression for the covariance
of the estimate if the measurement errors can be charac-

terized [3]. It is assumed that the error vector v is gaussian
distributed random and zero mean, which is reasonable for

independent analog transducers subject to external noise

such as the accelerometers. Then the covariance is given
by

Pe = E(t_ - 0) _ (14)

= (HT(O)R-1H(O)) -1 (15)

If for the moment it is assumed that all the accelerometers

have zero bias (ai = 0), unit gain (¢3i = 0), and equal error

variances (ai = aa), then it can be shown after some alge-

bra that the expected standard deviation of the estimate
is given by

O"a

a0 = V/-_o= _gg (16)

where again, aa is the standard deviation of a single ac-

celerometer, g is the acceleration of gravity, and a0 is the

predicted standard deviation of the resulting angle mea-
surement.

At this point it is appropriate to discuss some of the

advantages of the four-accelerometer configuration. First,

the expected angle error given by Eq. (16) is independent
of elevation angle 0. In other words, the instrument is

uniformly sensitive at all attitudes. This is a consequence

of having the instruments mounted along orthogonal axes;

although it is possible to determine elevation angle with

a single accelerometer, the resulting error in the estimate

varies with angle and even diverges when the accelerome-

ter is oriented parallel to gravity. Second, the configura-
tion provides for common-mode rejection. In the estima-
tor, the outputs from two aecelerometers in a back-to-back

pair are essentially subtracted from one another. Thus,
any unintended response common to both accelerometers

is effectively negated. The advantage of back-to-back in-
struments goes even one step further by eliminating some

nonlinear terms. In general, the most significant nonlinear

term in an accelerometer is the quadratic term, commonly
referred to as rectification. This term could arise, for ex-

ample, in a dynamic environment where seismic vibrations

were present. Again, since the outputs from the back-to-
back accelerometers are essentially differenced in the al-

gorithm, the rectification term nominally disappears and

disappears completely if the accelerometers have identical
characteristics.

The description of the minimum-variance estimator

used to determine elevation angle from the accelerome-

ter outputs is complete except for the corrections required
to accommodate deviations of the gravity vector from the

true geocentric vertical. However, parameter estimation

using an extended Kalman filter is proposed that pro-

vides dramatic improvement of the performance. Because

of the common-mode rejection, the largest remaining er-

rors in the accelerometer outputs are caused by errors in

the biases ai and the gains/3/. These errors tend to vary
from day to day; thus they cannot be removed consistently

by means of a one-time calibration. Itowever, as will be

shown, it is possible to obtain estimates of them using

the accelerometer outputs. The following description il-
lustrates the underlying principle.

For a given antenna elevation, there are four outputs

from the accelerometers. The number of unknowns is nine,

which includes the elevation angle, four biases, and four
gains. The four measurements are linear combinations of

the nine unknowns, in a linearized version of the system.
The number of unknowns exceeds the number of measure-

ments, so the system is underdetermined.
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Now, consider the antenna at a second, different ele-

vation angle. A second unknown is added--the second

elevation angle. Four more outputs from the accelerome-
ters are available. These additional outputs are different
linear combinations of the unknowns than the first set of

measurements since the system equations are linearized

about a different angle 0. Thus, at this point the num-
ber of unknowns is 10 and the number of measurements
is 8. With the addition of measurements at a third eleva-

tion, the number of equations will exceed the number of

unknowns, and all unknown parameters can be estimated.

In practice, the parameter estimation is implemented

using an extended Kalman filter [3]. The components of
the state vector at time ti are defined as the elevation

angle, the four biases, and the four gains:

xi -- (0 al _2 _3 a4 /31 /32 flz /34)i T (17)

In the extended Kalman filter formulation, it is assumed

that the state update and measurement equations can be

written as a single-stage transition with zero-mean gaus-

sian distributed random noise inputs:

Xi+l = Xi +W/; E(wiwi T) = O (18)

Yi = h(zi) + vi; Z(viv T) = R (19)

IIere, wi is tile process noise and vi is the measurement

noise. An extended Kalman filter for estimating tile state

in this system is given by

Xi+I- -_- Xi +

(_i-)1 = _ii

Oh(x_-) (20)
H - Ox

Mi = P, + O

Pi -- l_'Ii - ._'IiHiT(Hi]_liHi T + R) -1 Hi_[i

Ki = Pi Hi T R-1

x,+ = + - h(x,-))

llere, x_- is the state estimate before tlle Kahnan filter

update, and x + is the estimate after update; 0 denotes
tim minimum-variance estimate derived earlier, Iii is the

Kalman filter gain, Mi is the 9 × 0 state error covariance
matrix estimate before update, and Pi is the covariance

matrix after update. Of course, all dimensions are com-

patible with the nine-element state vector and the four-
element measurement vector.

The validity of the extended Kalman filter hinges on

whether or not the linearization is performed about the

correct trajectory. For this reason, the minimum-variance
estimate of the elevation angle 0 is used in the filter so

that the best possible parameter estimates are used before
linearization. In the simulation, the benefit of this modi-

fication was observed in the sense that angle estimation is

more accurate using the minimum-variance estimate than

not using it.

The covariance propagation equations as given in

Eq. (20) are well known to be sensitive to small errors
introduced from computational errors, and it is a common

problem that positive definiteness in the covariance matri-
ces can be lost, which can cause divergence of the filter.

To insure against this sort of problem, a square-root algo-
rithm was used to propagate the covariances [2].

The parameter estimation works best when the antenna

is rotated through as wide a range of elevation as possi-
ble. This suggests an initial calibration to initialize the

accelerometers, which is best accomplished prior to the

start of a tracking period. The calibration sequence would

require the antenna to be elevated from horizontal to ver-

tical. Even during tracking, the changes in elevation which
occur are sufficient to allow the filter to significantly im-

prove the accuracy of the elevation estimate.

B. Gyroscope Initialization

In order to obtain the antenna attitude angle using the

gyroscopes, the measured angular rates are integrated over

time. Errors in the gyroscope outputs, which may include

both systematic and random errors, are simultaneously in-

tegrated, resulting in corresponding errors in the computed
attitude. Thus it is necessary to reinitialize the gyroscopes

occasionally to determine their integration constants. To

initialize the gyroscopes, the antenna's attitude in inertial

space nmst be known at some instant in time, at which
point tim offset between the computed attitude and actual

attitude can be computed. The offset is then subtracted

from all subsequent computed attitudes to provide a more
accurate attitude estimate. It is not critical where the an-

tenna is pointed to obtain this initial attitude, since it can
be slewed to a desired target afterwards using the gyro-

scopes and the accelerometers to guide the antenna along

its desired trajectory.

Determining the antenna's attitude is equivalent to de-

termining the coordinate transformation between the an-
tenna's local coordinate system and some known reference

system, e.g., inertial or Earth-based. The most commonly

used transformation is a 3 x 3 rotation matrix, which is
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composed of nine elements that consist of the direction
cosines between the coordinate axes in the local system

and the corresponding axes in the reference system. An al-
ternative formulation using quaternions has computational

advantages for real-time computations [2] and will likely be

used in an implementation of the proposed concept; how-
ever, quaternions are not used in the analysis presented
here and therefore are not discussed further in this article.

Of the nine parameters that constitute a rotation matrix,

only three are independent. Thus to evaluate the rota-
tion matrix, or equivalently, the antenna attitude, at least

three parameters must be determined.

Two of the three required parameters can be deter-

mined by establishing the direction, in the antenna ref-

erence system, of a vector whose direction is known in the

absolute reference frame a priori. For example, the di-

rection of any vector originating from the center of the

Earth is specified by the two parameters of latitude and

longitude. Once the direction of a second, different vector
is known, the coordinate transformation is overspecified

and can be estimated by combining the measurements in
a minimum-variance estimator. One example of a vector
that could be used to determine absolute antenna attitude

is the local gravity vector. Its direction can be estimated

using the algorithms described in the previous section. A
second candidate vector is the Earth's spin vector. This

can be determined using the gyroscopes, which fundamen-

tally measure angular rate about their sensitive axes. How-

ever, one must be careful to accommodate any rate caused

by motion of the antenna relative to the Earth. A third

candidate vector is a ground-based optical beacon. The
antenna could be pointed towards a beacon whose posi-

tion is known from a prior survey, using a star tracker in a

closed-loop system. This technique has tile disadvantage

that a star tracker is required and is also subject to errors

caused by refraction in the atmosphere. Yet another can-

didate vector for initialization is a celestial object such as

a star or radio source. The primary disadvantage of deter-

mining the direction of such a vector is that the antenna
must actively track the object to determine its direction;

additional disadvantages include errors caused by atmo-

spheric refraction and the necessity for a star tracker (for

an optical source).

The proposed scenario for initializing the gyroscopes

uses determination of the local gravity vector and the

Earth's spin vector to determine the required coordinate

transformation. The scenario requires temporarily lock-

ing the antenna in its elevation and azimuth axes to hold
the antenna rate relative to Earth to zero, at least in a

mean sense if seismic vibrations are present, so that the

accelerometers and gyroscopes can be averaged over a pc-

riod of time to obtain the best possible accuracy. It was

recognized from the beginning that the requirements on

the gyroscopes would be severe to determine the Earth's

spin vector with sufficient accuracy for 1-mdeg pointing.
It is estimated from the statistical properties of available

gyroscopes that the antenna will have to be kept station-

ary for approximately 15 minutes in order to achieve this

level of pointing knowledge. This is a burden on antenna

operations which must ultimately be weighed against the
disadvantages of alternative initialization strategies such

as those utilizing star trackers.

A minimum-variance estimator is used to determine the

direction of the Earth's spin axis using the outputs from
the three gyroscopes. Figure 5 shows the relative orienta-

tions of the antenna local reference frame, the gyroscopes,

and the Earth's spin axis. The corresponding measure-

ment equations are

Y2 _- _2 + v2 (21)
Y3 _3 tJ3

Here, l'_i is the component of the Earth's spin vector along
the ith coordinate axis, Yi is the rate output associated

with the ith gyroscope, and t'i is the corresponding rate-

error term. The gyroscope errors vi consist of both random

errors such as might be caused by electronic noise, and

deterministic components such as those caused by imper-

fect calibration, drift in gyroscope parameters, uncompen-
sated temperature effects, etc. It is reasonable to assume

that since the gyroscopes are identical within manufactur-

ing tolerances, the expected variances of the error terms

should be approximately equal, at least on the average:

E(vl _) : E(v22) : E(va _) = R (22)

The corresponding minimum-varianceestimate of the Earth

spin vector, _, is found by minimizing the cost functional

3

y 1= (y' - (23)
i=1

from which the components of the spin vector estimate can
be obtained

= y; (24)

Because the measurements are taken along independent
axes, the error in the estimate _ is given, where I is the

3 x 3 identity matrix, by

- - n)T= RZ (25)
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Within one standard deviation, the estimate lies within a

sphere of radius V_ of the true spin vector, as illustrated

in Fig. 6. It can be seen that the angular error in the
estimate of the Earth's spin vector is bounded by

_< (26)

Itere, crs is the standard deviation of the angular error in

the estimated spin vector.

With knowledge of the Earth's spin vector and the local

gravity vector and estimates of their respective errors, it is

possible to construct an estimator that combines the local

gravity vector with the Earth spin vector to determine the

rotation matrix Q which relates the antenna local reference
frame to the Earth local frame, i.e.,

ei = Qe/ (27)

Here, ei is the ith unit vector in the Earth or "unprimed"
frame and ei' is the corresponding unit vector in the an-

tenna or "primed" frame. The rotation matrix Q can be

written as the product of two rotations as

Q = Q1* Q0 (2s)

where Q0 is the known a priori estimate and Q1 is a rota-

tion matrix involving small angles that needs to be deter-
mined. An intermediate "double-primed" reference frame

is defined by

ei" = Qoei' (29)

where components ei" consist of a priori estimates of the
Earth-based unit vectors el. Thus, it is possible to write

ei = Olei" (30)

If Q0 is a close approximation to Q, then Qx can be written
using a small-angle approximation. Figure 7 shows the

"unprimed" and "double-primed" frames, and it can be
seen that for small rotations, Q1 has the form

Q1 _-_

1 -as o_=
-_ al 1

(31)

Here, oq is the rotation angle about the ith coordinate

axis in the "unprimed" frame. The rotation angles cq,

and hence Q1, can be estimated using a minimum-variance

estimator that combines tile estimate of the Earth spin

vector with the estimate for the local vertical. After some

algebra, a state-measurement equation can be developed
that has the familiar form

y = Ha + v (32)

Here, y is a 6 x 1 vector whose elements consist of the

components of the normalized estimated gravity and spin

vectors, H is a 6 × 3 matrix whose elements are functions
of the known rotation matrix Q0, a is a 3 x 1 vector whose

elements consist of the rotation angles cri, and v is a 6 × 1

error vector. Using Eq. (32), the minimum-variance esti-

mator is developed in the usual manner and has the same

form as Eq. (13), the minimum-variance estimator for tile

antenna elevation angle.

The estimator obtained from Eq. (32) remains valid

only as long as the linear approximation given by Eq. (31)

for Ql remains accurate. This will be true only if the initial

approximation to the transformation matrix Q0 is close to
the actual transformation Q. A related problem is that the

matrix Q computed using Eq. (28) tends to lose orthogo-

nality because of the small-angle approximation made in

Eq. (31). The approach used to address these problems is
to use an iterative strategy to determine Q, as follows. An

initial approximation Q0 to the rotation matrix Q is made

using angle encoder readouts, which provide a very good
initial value. Tile minimum-variance estimator is used to

determine the correction term Q1- From this, the rota-

tion matrix Q is obtained according to Eq. (28). At this

point, Q is reorthogonalized. The process is repeated sev-

eral times, using the most recently calculated Q as the new

Q0.

The covariance of the estimate can be derived analyti-

cally, and is given by

P = E(o_ot T)

= 0

0
o o )RI Rltan(¢)

Rltan(¢) Rltan2(¢) +

(33)

Here, ¢ is the latitude angle of the antenna, R1 is the
variance of the normalized Earth spin vector (in rad 2) and

R2 is the variance of the normalized local gravity vector

(again, in rad2). From Eq. (33), one can determine the
accuracy of the estimate as a function of the accuracy with

which the spin and gravity vectors are estimated. This can
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be used in reverse to determine the requirements on the
gyroscopes and the accelerometers, as will be shown below.

C. Slewing and Tracking

Once the gyroscopes have been initialized, the antenna
must be slewed into a position that will intersect the de-

sired tracking trajectory. The speed and accuracy with

which the antenna can be slewed is governed by a number

of factors, including the rate at which the antenna can be

moved, the time that can be tolerated to perform a slew,

and the buildup of errors caused by gyroscope errors and

sampling rate. Tracking a target is virtually identical con-
ceptual[y to slewing, except that the slew rate is nearly

zero because celestial targets remain essentially stationary
in an inertial frame.

Since the baseline configuration uses a ring-laser gy-

roscope (see below), it is considered in the following dis-

cussions of slewing and tracking. An optical gyroscope

outputs an integrated angle; thus, to obtain the rate used
for tile Earth spin axis determination, successive outputs

must be differenced. A simplified model for the output of

a single-axis optical gyroscope at time ti can be written as

Yi = Bi + enti + G(1 + eg)Oi + rli (34)

Tile quantities are defined as: Yi is the gyroscope out-
put at time t = ti, Bi is the bias drift, ca is the error in the

drift rate, ti is the time elapsed since gyroscope initializa-

tion, G is the gyroscope gain, eg is the error in the gain, Oi
is the total angle through which the gyroscope has rotated

about its sensitive axis, and r/i is the measurement noise,

which may be taken to be random. In addition, the gy-
roscope bias Bi is subject to a random-walk phenomenon

caused by quantum-mechanical effects or shot noise:

Bi+l =Bi +7i (35)

ttere, 7i is a random process noise. Equations (34)
and (35) govern the growth of errors in a single optical

gyroscope. By inspection, the growth of the error terms

with time is as follows. Error caused by drift in the bias

is a random-walk process and is proportional to V_. Er-
ror caused by rate drift is proportional to t. That due to

gain error is proportional to the change in angle between

sampling periods, which is proportional to the antenna

slew rate and inversely proportional to the sampling rate.

That due to measurement error is proportional to 1/v_.
Figure 8 shows the growth of the error terms with time for

a representative optical gyroscope whose parameters are

based on conversations with and specifications provided

by several gyroscope manufacturers, and are given in Ta-

ble 1. In this example, the error contribution from the

measurement noise dominates for elapsed times less than
about 1 second, while the gain error and bias random-walk

terms dominate at larger elapsed times. Note that the con-

tribution from gain error at the longer elapsed times can,

in general, be reduced by slowing the slew rate until tile
bias random walk dominates the error.

An additional source of error during slewing and track-

ing arises from the fact that rotations are not commu-

tative, except in the limit of infinitesimal rotations [4].
Because of this, the trajectory of the antenna must be

known in order to correctly interpret the gyroscope out-
puts; individually integrating the rate outputs from the

three gyroscopes will produce an incorrect result. Since

the gyroscopes are sampled at discrete times, the antenna

trajectory is only approximated. For example, suppose

an antenna undergoes an attitude change resulting from
successive rotations about two different axes

R= R1(01) ,R2(02) (36)

If these rotation angles 01 and 02 are small, then it is
possible to make the approximation

/_(0i) _ I + Ai(0i) (37)

where Ai(0i) is linear in 0i and [Ai I < clOil,where c is some

constant that is close to 1. A second, different rotation

that gives the identical gyroscope outputs is given by

R' = R2(02) * RI(01) (38)

and differs from R by

R'-R_A_A1 - AaA_ (39)

Substituting the above bound on Ai into Eq. (39), one ob-
tains an expression for a bound on the error in the rotation

I R'- R[ _<2c I 0102 I (40)

The accumulated error from n rotations, each of magni-

tude 0, is thus bounded by approximately

J 1_ - R J < 2cnO 2 (41)

This relation cannot be used directly to determine the er-
ror caused by noncommutation of rotations because the

constant c depends on the trajectory followed, which de-
pends on the vibration environment of the antenna. The
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determination of the antenna vibration environment is be-

yond the scope of this article, as it requires a simula-
tion that includes the antenna dynamics. Nevertheless,

Eq. (41) does illustrate the growth of this type of error; the
error is quadratic with rotation angle and linear with the

number of rotations. Furthermore, once c is determined,

Eq. (31) can be used to specify the maximum allowable

angular excursion 0 that can be tolerated between gyro-

scope sampling periods, and consequently, the maximum
allowable slew rate and the required sampling rate. For

example, using Eq. (41) with c = 1, it can be shown that
the number of samples n required to perform a 20-deg slew

at a rate of 0.1 deg/sec is about 250,000 over the period

of the slew, which is 200 seconds. Thus the sample rate is

bounded by about 1250 Hz. Since Eq. (31) represents an

upper bound, this sample rate is probably faster than it
needs to be.

Since the direction of the local gravity vector can be de-

termined and is available, it is reasonable to incorporate
this information into yet another minimum-variance esti-
mator that combines it with the attitude estimate obtained

from integrating the gyroscope rates. This estimator has
essentially the same structure and derivation as that de-

scribed in Eqs. (27) through (31), but with two differences:
first, the estimated boresight of the antenna which is ob-

tained from integrating the gyroscopes is used in place
of the estimate of the Earth's spin vector; and second,

the gyroscope integration provides additional information

consisting of the antenna rotation about its boresight, for

use by the estimator. In this case, the covariance of the
minimum-variance estimate is given by

P

0 0
2

RI+R2 RI+R2

RL+R_ R,+R_

(42)

Again, this expression for the attitude covariance can be

used to determine instrument requirements. In Eq. (42),

the angle ¢ does not refer to tile antenna latitude but
instead refers to the angle between the antenna boresight

and the local gravity vector.

D. Instrument Requirements

In this section, the expressions for the error covariances
are used to obtain error bounds for the accelerometers and

gyroscopes. These bounds are obtained by requiring that
the norm of the attitude covariance matrix P given in

Eqs. (33) and (42) be smaller than the required pointing
variance.

First the requirements for initialization are consid-

ered. The relevant instrument parameters are absolute

accelerometer accuracy in pg, and the gyroscope rate ac-

curacy in deg/hr (for example). It can be shown from

Eq. (33) that the following inequality holds true:

I P [ < RI(1 + tan2(¢)) +
R2

¢o82(¢)
(43)

Specifying that IP[ < 1 mdeg 2, and substituting 1 mdeg =

17.5 x 10 -6 rad, requires both that

RI(1 + tan2(¢)) _< (17.5 x 10-6) 2 (44)

and

R----2--2_< (17.5 x 10-6) 2 (45)
co82(¢)

Recall that R1 is the angle variance of the normalized local

gravity vector; thus, applying Eq. (16) one obtains

a_ < ,¢_g cos (¢) x 17.5 x 10 -6 (46)

as a requirement for the accelerometer accuracy _r_. Sub-

stituting for the latitude of the Goldstone complex, ¢ =

35 deg, the accelerometer requirement becomes

cr_ < 20 pg (47)

In other words, the accelerometers must be accurate in an

absolute sense to better than 20 pg rms. This accuracy
applies to the accelerometers after the extended Kalman

filter algorithm has been applied to remove gain and bias

errors, so the devices actually used may have relaxed spec-

ifications compared to Eq. (47).

The required gyroscope accuracy is given by

/_2

co82(¢)
< (17.5 x 10-6) _ (48)

2 is the vari-From Eq. (26), R2 = R/f2 _, where R = a_

ance of the gyroscope rate and f2 is the magnitude of the
Earth's spin rate. Thus, the accuracy requirement on the

gyroscope rate is given by

cr_ < 1"2COS (¢) x 17.5 x l0 -6 (49)

_rr _< 2.1 x 10 -4 deg/hr (50)
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It must be recognized that the requirements specified
above for the accelerometers and gyroscopes represent up-

per bounds; when errors from both terms occur simul-

taneously, each individual term must be correspondingly
reduced.

Next, the requirements for tracking at the 1-mdeg level

are given. It can be shown, after considerable algebra,

that the norm of the covariance matrix for tracking given

by Eq. (42) is bounded by

[P] < R2 (51)

or, imposing the condition that IPI < 1 mdeg 2, one

obtains the necessary condition for the gyroscope drift

a0 _ 1 mdeg (52)

This bound a0 is the maximum angular error that can be

tolerated from the integration of a single gyroscope at a low

slew rate. From Eq. (52), the maximum error in tracking is
completely determined by the accuracy in the gyroscopes,

and the accelerometers play no role in fixing this bound.
This reflects the fact that rotation of the antenna about the

local gravity vector can only be sensed by the gyroscopes.

This does not indicate, however, that the accelerometers

do not benefit tracking performance; on the contrary, they
help significantly to determine antenna attitude within the

elevation plane.

While tile requirements presented above are represen-

tative of the performance levels needed to satisfy 1-mdeg

attitude knowledge, the system is sufficiently complex that
these requirements are overly simplistic. In fact, the true

performance of the system for a given set of instruments
must be determined via simulation, because of the com-

plex interactions among the various estimation algorithms
and the mix of stochastic and systematic error sources.

IV. Component Selection

A. Introduction

A large part of the effort in tile feasibility study has

been focused on collecting data from the various manufac-
turers on the performance of available and projected state-

of-the-art instruments, including gyroscopes, accelerome-

ters, and inclinometers. This information was needed in

order to conduct simulations using representative instru-

ment parameters, and also can be used to make prelimi-
nary recommendations for component selection. The in-

struments suitable for the present application were devel-

oped primarily to meet the need for precision inertial guid-

ance for missile systems and other military applications,

with some development traceable to spaceflight require-

ments. The inertial instruments are typically integrated

into a single package, either as an inertial platform that

retains its attitude in inertial space or as a strapdown sys-

tem that is rigidly secured to the vehicle. Inertial plat-
forms can be more accurate than strapdown systems and

are generally used for long-range navigational systems that

must maintain precision for long periods of time. Because

of the high cost of inertial platforms, however, strapdown

systems are favored for the present application.

The primary sources of information concerning the in-
strument characteristics were the instrument vendors. For

the most part, classified sources were not used in the study.

An excellent summary of modern inertial instruments is

contained in [5].

B. Gyroscopes

1. Overview. Gyroscopes can be classified as either

optical or mechanical. In addition to the familiar spinning-

wheel gyroscopes, mechanical gyroscopes include devices

such as the hemispherical-resonator gyroscope [6] and the
experimental magnetic-resonance gyroscope [5], which do

not have any moving parts. Because of their more mature
status, the only mechanical devices considered here are

the spinning-mass gyroscopes. In spite of the notable lack

of a rotating component in the optical devices, the term

"gyroscope" has been retained for the optical devices.

Descriptions of the spinning-wheel gyroscopes can be
found in standard textbooks such as [7]. There are two

major classifications of spinning-wheel gyroscopes. Those
constrained to precess only about one axis (the "output"

axis) are called single-degree-of-freedom (SDOF) or single-

axis gyroscopes, while those that can precess about two
axes are referred to as two-axis or two-degree-of-freedom

devices. This precession is sensed by the instrument and a

torque is generated to counter the rotation about the out-

put axis. Extensive research and development has been

devoted to all aspects of precision gyroscopes. As a result,

the spinning-wheel gyroscope is much more mature than

other types, and consequently shows little potential for
radical improvements over the current performance lev-

els. The mechanical gyroscopes considered include the

SDOF floated gyroscopes, dynamically tuned gyroscopes,

and electrostatically suspended gyroscopes.

Optical gyroscopes are less mature than mechanical gy-

roscopes and at present are characterized by somewhat

larger errors. However, the lack of moving parts in the
optical gyroscope provides the basis for a number of po-

tential advantages that include lower initial cost, reduced

maintenance and cost of ownership, shorter warmup times,
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large dynamic range, greater long-term stability, and in-

sensitivity to acceleration, shock, and vibration. The op-

tical gyroscopes include various versions of the ring-laser

gyroscope (RLG) [8] and the interferometric fiber-optic gy-

roscope (IFOG) [9]. Both types are currently undergoing

intense development and show the potential for continued
improvement in performance. Of the two, the ring-laser

gyroscope represents the more mature technology and is

widely used on commercial aircraft as well as for mili-

tary applications. On the other hand, tile fiber-optic gy-

roscopes are theoretically capable of better performance.

An IFOG has been chosen for the guidance system of the

upcoming CRAF/Cassini Mariner Mark II space mission.

2. Mechanical gyroscopes.

a. The single-degree-of-freedom-floated gyroscope. The

single-degree-of-freedom floated gyroscope (SDOFF) con-
sists of a spinning wheel mounted in a sealed cylindrical

float with its spin axis perpendicular to the axis of the

cylinder. The cylinder is mounted within a case with bear-

ings that constrain its motion to rotation about the cylin-

der axis. This axis is also the output axis of the gyroscope.

The space between the float and the case is filled with a
viscous fluid. To minimize acceleration effects, the fluid is

selected to provide neutral buoyancy for the float. The gy-

roscope input axis is mutually perpendicular to the wheel

spin axis and the float axis.

In operation, rotation about the gyroscope input axis

produces a torque about the output axis. If the gyroscope

is configured as rate-integrating, the float angular rate is

such that the viscous drag on the float just balances the

gyroscopic torque. Thus, the float rotation rate is propor-

tional to the angular rate about the input axis and the
angular deflection of the float is proportional to the time

integral of this rate. It is common practice to detect float
rotation and apply a countertorque to return the float to

its null position. The applied torque is proportional to the

rotation rate about the input axis and the angular position

of the case is found as the integral of this rate.

Development of the SDOFF gyroscopes during the past

40 years has been mainly in response to the inertial guid-

ance needs for aircraft and ship navigational systems and

more recently for missile guidance and control. Examples
of the results of this effort for the most precise applica-

tions include the use of hydrodynamic gas bearings for

wheel support and magnetic suspensions of the float out-

put axis. Also, considerable effort has been devoted to the

development of a single-species flotation fluid to avoid er-

rors caused by stratification of mixed-polymer fluids. The

need for precision pointing and tracking of directed-energy

weapons has placed an emphasis on low noise.

Both Charles Stark Draper Laboratories (CSDL), pre-
viously the MIT Instrumentation Laboratory [10], and

Northrop Corporation [11] have developed SDOFF gyro-

scopes that appear adequate for the antenna pointing re-

quirements. Typical performance of the fourth-generation

gyroscopes are drift stability of 0.0001 deg/hr over a 24-hr

period, and rate uncertainty, which is primarily due to the

gyroscope electronics, of 1.6 x 10 -5 deg/hr. A simplified

cutaway drawing of the CSDL Fourth Generation Tech-

nology Demonstration Device is shown in Fig. 9.

b. The dynamically tuned gyroscope. The dynamically

tuned gyroscope (DTG) is a spinning-wheel gyroscope that

avoids the use of temperature-sensitive flotation fluids that

is characteristic of the SDOFF. The DTG was developed

in the early 1960s for applications that required medium

accuracy in moderately severe environments. Successful

applications include use for the inertial reference units of

the Voyager spacecraft (DRIRU I) and the Magellan space-
craft (SKIRU) [12]. Another DTG is DRIRU II [13] de-

veloped by Teledyne for NASA as the NASA "standard"
inertial reference unit.

Although development of the DTG is continuing, high-

grade DTGs do not match the accuracy of precision

SDOFF gyroscopes and probably would not satisfy the an-
tenna pointing requirements. A cross section of the Tele-

dyne DTG is shown in Fig. 10.

c. The electrostatically suspended gyroscope. Develop-

ment of the electrostatically suspended gyroscope (ESG)

[14] began during the late 1950s, and 0.001-deg/hr gyro-
scope system performance was demonstrated by 1971. The

ESG has undergone continued improvement since then. A
major attribute of this system, which has found applica-

tion as an accurate submarine navigational system, is its

long-term stability and high precision.

The ESG is a free-rotor system consisting of a metallic

sphere that is spun up to about 3600 rev/sec and electri-

cally suspended in a hard vacuum. The operating period is

measured in years. The spin axis remains fixed in inertial

space and its position relative to the case is determined

by pickoffs. The ESG is produced by both IIoneywell

and Rockwell International. The IIoneywell instrument is

made with a hollow sphere and the spin axis is measured
optically by observation through a window. The Rockwell

device is made with a solid sphere whose center of mass

is slightly offset from the geometric center, which causes a

slight wobble that can be detected optically, thereby facil-

itating determination of the spin axis.

The ESG is generally regarded as the most accurate gy-

roscope available for shipboard navigational systems when

83



used on a stabilized platform. Unfortunately, the perfor-

mance figures are classified. It is also a very expensive sys-
tem and for this reason was not considered for the present

application.

3. Optical gyroscopes. Optical gyroscopes are based

on the Sagnac effect, which predicts that two optical waves

traveling in opposite directions around identical closed

paths will experience pathlength differences that are pro-

portional to the rotation rate of the closed loop [15]. The
process is shown schematically in Fig. 11, in which optical

waves are introduced into a circular loop at point A and

traverse a common path in opposite directions. If the loop

(and point A) rotate in the clockwise direction, the clock-
wise wave requires a longer time to arrive back at point A

than does the counterpropagating counterclockwise wave.
It can be shown that the time difference 6t for the ar-

rival times of the two waves at point A and the associated

pathlength difference _L are given by

and

where D is the loop diameter, L = 7rD is the optical path-
length, 12 is the loop rotation rate, and c is the speed of

light. A more general derivation that includes noncircular

paths shows that LD may be replaced by 4A, where A is

the area enclosed by the optical loop.

The different types of optical gyroscopes use different

techniques to measure the rotation-induced pathlength dif-

ference. The optical gyroscopes considered here are the

ring-laser gyroscope and the interferometric fiber-optic gy-
roscope, as represented by the JPL fiber-optic rotation sen-

sor (FORS) [16]. The ring-laser gyroscope takes advantage
of the lasing characteristics of an optical cavity between

two cavity resonance frequencies. For a fiber-optic gyro-

scope, L is the total length of optical fiber comprising the

optical path. The rotation-induced pathlength difference
is sensed as an optical phase difference of the two waves.

The phase difference _¢ is given by

_¢= _ = _ _ (55)

where _ is the optical wavelength.

It is expected that continued development will continue

to reduce errors; however, a fundamental limit to perfor-

mance of optical gyroscopes associated with photon statis-
tics results in irreducible random-walk errors. This limit

does not exist for mechanical gyroscopes, whose errors are

caused mainly by the electronic processing.

a. The ring-laser gyroscope. A block diagram of a ring-

laser gyroscope is shown in Fig. 12. As the ring laser ro-

tates, the Sagnac effect results in an effective pathlength

difference, given by Eq. (54), for waves that propagate in
opposite directions. The pathlength changes can be quite

small. For the present application, which requires sens-

ing a rotation rate as small as 10 -4 deg/hr to determine

the spin axis to within 1 mdeg, Eq. (54) implies a path-
length difference of about 10 -19 m for a typical RLG with

optical loop area A = 0.01 m 2. This indicates the very ex-

treme gyroscope sensitivity required and indicates a need

to integrate the gyroscope output for a period of time to

accomplish initialization.

The wavelength and frequency of the clockwise and
counterclockwise waves in RLGs adjust to satisfy the laser

resonance condition that requires an integer number (m)

of optical wavelengths A within the optical cavity. Thus,

Am = L, or using c = Au, one obtains the frequency dif-

ference of the two laser modes with path length difference
8Las

(56)

The frequency difference is detected as interference

fringes as portions of the counterpropagating waves com-

bine on an optical detector. One fringe passes a point on

the detector during a time interval of (_)-1. The output

from the RLG is the fringe count and is traditionally rep-

resented as the angular motion expressed as arcseconds. A

ring-laser gyroscope scale factor (AL/4A) of about 1.5 arc-

sec/count is typical.

The fundamental limit to performance of any RLG

is associated with statistical fluctuations of spontaneous
emissions from the laser. This error mechanism results

in "angle random walk," a quantity characterized by the
random-walk coefficient. At the present time, RLG per-

formance is nearly at the quantum limit imposed by the

photon statistics.

The key error mechanisms that can be suppressed or
compensated are bias and scale factor nonlinearity. Bias

is the measured rate when gyroscope rotation rate in iner-

tial space is zero. Scale factor, as indicated above, is the



ratioofthegyroscoperotationrateandtheindicatedout-
put. At lowrotationrates,thecounterpropagatingwaves
coupletogetherbecauseof lightscatteredfromeachwave
to produceadeadzoneoverwhichtheeffectiveoutputis
zero.This phenomenon is known as "lock-in" and repre-

sents the major source of scale factor nonlinearity. Various
ways to reduce the scattered light and to compensate for

lock-in have been developed.

Ring-laser gyroscopes are classified as either two-wave

or four-wave devices. The light waves are linearly polar-

ized in two-wave RLGs and circularly polarized in the four-

wave types. Various types of two-wave devices have been

developed to compensate for lock-in. The most common
techniques to overcome lock-in of two-wave RLGs are body

dithering and optical-pathlength dithering. In each, an

oscillating bias is applied to produce a sensed rate that

is larger than the lock-in for most of the dither period.
Dither noise, which used to dominate RLG performance,

has been reduced to very low levels. Dithered RLGs are

produced by lloneywell, Rockwell International, and Kear-

fott, among others.

The four-wave RLG, which is produced by Litton and

marketed as a ZLG (zero lock-in laser gyroscope)[17], uses

an optical method to avoid lock-in. The technique that is
used to bias the four-wave gyroscope provides for common-

mode rejection of the drift and noise caused by the dc

optical bias element.

Tile RLG output is the count of interference fringes
that cross the detector. If the readout is not interpolated

to indicate a small fraction of a fi'inge, a "quantization

error" results. The dithered instruments generally use a

technique that fixes tile quantization error at 1/4 fringe.
The resolution of the Litton ZLG is about 10 -3 fringes.

Typical values of the best performance of present day

ring-laser gyroscopes are a random-walk coefficient of
2 x 10 -4 deg/v/_r and bias instability of 3 x 10 -4 deg/hr.

The projected performance is very near tile fundamental
limit with a random walk of 5 x 10 -_ deg/x/_.

If tile bias instability can be reduced to less than

10 -4 deg/hr, the tracking requirements for a 10-hr pe-

riod can be met by an RLG. The initialization procedure

entails holding the antenna at a fixed position for a pe-
riod of time. If the jitter of the stationary antenna is

zero-mean, the projected random walk would permit the
required rate accuracy of l0 -4 deg/hr with an integration

time of 15 minutes. During this period, approximately

one-tenth of a fringe will cross the detector.

b. The fiber-optic gyroscope. Fiber-optic gyroscopes are

classified as passive devices because the light source is not

an integral part of the optical path. Unlike the ring-laser

gyroscope, the fiber-optic gyroscope is not subject to the

lock-in phenomenon. There are two types of fiber-optic gy-

roscopes, the interferometric fiber-optic gyroscope (IFOG)

[lS] and the resonant fiber-optic gyroscope (RFOG). The
RFOG is presently under development at CSDL and will

not be discussed here. The IFOG is under development
at a number of universities and industrial houses. The

IFOG discussed below is being developed at JPL as the

fiber-optic rotation sensor (FORS).

The motivation for developing fiber-optic gyroscopes is

that the all solid-state construction has potential for highly
reliable devices characterized by low weight, low power

and long life. Once developed, fiber-optic gyroscopes are

expected to have a distinct cost advantage over other gy-

roscopes. The FORS, which is tile present baseline iner-

tial reference unit for the CRAF/Cassini Mariner Mark II

(MMII) space mission, consists of an integrated optic chip

to which the fiber coil, edge-emitting laser diode source,
and detector are connected. Figure 13 shows a diagram of
the JPL FOILS.

In contrast to the ring-laser gyroscope, which mea-

sures the Sagnac effect due to a single passage around
a closed optical path, the interferometric fiber-optic gy-

roscope measures the Sagnac effect in a fiber coil having

many turns. Because the source is not part of tile loop, the

frequency of both waves remains constant and the Sagnac

effect is measured as a phase difference of tile two coun-

terpropagating waves. The phase difference is related to

the pathlength as shown in Eq. (55). For an N-turn coil,

Eq. (55) may be written as

(4NA_
A¢=2r \ ,_c ] f2 (57)

where A is tile area enclosed by a single loop of fiber.

IFOGs may be operated open-loop or closed-loop by
compensating the Sagnac phaseshift through the intro-

duction of a nonreciprocal phaseshift of opposite polarity

within the fiber loop. A common method to accomplish

tile phase-nulling effect is to apply the shift at one end

of the loop using a technique known as serrodyne phase

modulation. In FORS, the effect of phase nulling is read

by sampling a part of the counterpropagating beams using
a method called optical beat detection. This results in a

scale factor differing from that of the RLG, Eq. (56), by

only a factor of n, the refractive index of the fiber.
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Detector shot noise provides the fundamental limit to
the IFOG performance and results in a random-walk er-

ror characterized by a random-walk coefficient, as for the

RLG. Shot noise is reduced by increasing the optical power

on the detector; however, there is an upper limit to the

laser power because of errors due to nonlinear optical ef-
fects in the fiber.

Rayleigh backscattering results in short-term random

noise that is corrected by the use of broadband opti-

cal sources, such as the superluminescent diodes or edge-

emitting diodes as used in FORS. Error sources associated
with long-term bias stability have been identified and are

presently undergoing intense study.

The demonstrated random-walk coefficient (RWC) of

FORS is close to the quantum limit for the configuration
used. With _ = 1.3 pm, L = 1 km, and D = 0.1 m,

the measured RWC is 7 x 10 -4 deg/root hr. The bias

instability goal for the MMII application is 10 -3 deg/hr.

Additional development is required for antenna-pointing

applications. The probable approach would be to increase

the fiber length and the LD product to provide a RWC

comparable to that of the projected value of the RLG. To
be useful for the present application, the bias instability

must be decreased by at least an order of magnitude.

C. Accelerometers

1. Overview. Accelerometers are needed to determine

the local vertical during the initialization step, and are
also used to determine antenna elevation. Accelerometers

may also be used to measure the tilt of the elevation axis;
however, an inclinometer can perform that function more

cheaply and accurately.

The heart of an accelerometer is a proof mass that is
constrained to move along a single sensitive axis. A va-

riety of ingenious methods have been used to sense the

force on tile proof mass and to provide an output signal

that is proportional to the input acceleration. Nearly all

accelerometers operate in a closed-loop configuration, in

which movement of the proof mass is sensed and a signal
is generated to restore the proof mass to its null posi-

tion. An exception is the vibrating beam accelerometer,
which operates open-loop and senses the acceleration as

the change in frequency of force-sensitive vibrating quartz
beams.

Accelerometers are commercially available with a wide

range of performance and cost. Reported resolution val-

ues vary from a fraction of a pg for high-grade navigational
instruments to over a hundred pg for more commonplace

applications such as construction work. Some of the ac-

celerometers with capabilities sufficient for the proposed

antenna pointing application are discussed below.

2. The gyroscope-based accelerometer. The pen-

dulous integrating gyroscope accelerometer (PIGA) has
a pendulous proof mass attached to the spin axis of a

single-degree-of-freedom mechanical gyroscope. Accelera-

tion along the sensitive axis results in a force on the proof
mass and produces a torque on the gyroscope output axis.

The gyroscope is mounted on a member that is rotated in

response to the gyroscope output signal to produce a gyro-

scopic torque that balances the torque caused by the input

acceleration. The PIGA output signal is proportional to
the time integral of the input acceleration.

The PIGA is probably the highest performance ac-

celerometer available. It has undergone continuous de-
velopment since World War II by CSDL and the MIT In-

strumentation Laboratory. It is presently used in high-
performance strategic missiles and can serve as a high-

resolution gravimeter. The performance of existing PIGAs

includes a resolution of better than 10 -6 g with prospects
of a resolution better than 10 -s g projected for future

instruments. This performance significantly exceeds the

proposed DSN antenna application; however, because of
its cost, the PIGA is not considered a candidate for the

present application.

3. Force-rebalance accelerometers. The general

class of force-rebalance accelerometers contains a proof

mass supported by a flexure and constrained to move along
a single axis. The position of the proof mass is detected

and the mass is restored to its null position by a rebalance

force generated by a control loop. The current in the con-

trol loop, which is proportional to the input acceleration,
provides the output signal. Performance characteristics

include the instrument resolution as well as long-term and
short-term errors in the bias and gain parameters. As dis-

cussed above, the values of the gain and bias parameters

may be estimated prior to and during normal operation
by using the minimum-variance estimators and extended

Kalman filtering algorithms. When this is done, the un-

compensated random variations of the bias and gain de-
termine the accuracy of the instrument.

Manufacturers of force-rebalance accelerometers include

Bell Aerospace, Textron, Incosym, Kearfott, Litton,

Northrop, Rockwell International, Sundstrand, and Schae-

vitz. Many instruments in this category, which feature a

resolution that varies from 1 pg to about 10 pg, meet the

requirements for the present pointing application.
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4. Vibrating-beam accelerometers. The ba-

sic sensing element of the vibrating-beam accelerometer

(VBA) is a force-sensitive, vibrating quartz crystal beam

that changes its resonant frequency in response to axial

tension and compression. Forces are derived from accel-

erations applied to a pendulously supported proof mass.

The proof mass is restrained along the sensitive axis by

two quartz beams so that one beam is placed in tension
and the other in compression as a result of acceleration.

The VBA output signal is proportional to the frequency

difference of the two beams. The "push-pull" arrangement

of the quartz beams results in common-mode rejection of
most of the error sources. A schematic of the VBA [19],

which operates open-loop, is shown in Fig. 14.

Acceleration on the VBA's fiexure-mounted proof mass

places one of the vibrating quartz beams in tension and

another in compression. The VBA output is the difference

in frequency of the two beams. Thus, the crystal beams
and oscillator circuits replace the torquer coils, magnets,

and capture electronics of the conventional force-rebalance
accelerometer.

The VBA has been under development at the Kearfott

Division of the Singer Company (now the Astronautics

Corp. of America). Short-term bias stabilities of 1 pg and
scale factor stabilities of 1 part per million (ppm) have

been demonstrated with the VBA. This performance is

well within the requirements of the present application;

however, the instrument is not yet available commercially.

D. Inclinometers

The purpose of an inclinometer in the present applica-
tion is to measure the level of the elevation axis. Common
inclinometers make use of force-rebalance accelerometers

or the level assumed by a liquid in a suitable enclosure.

One simple concept for an inclinometer is based on the

carpenter's bubble level. Spectron Glass and Electron-
ics markets a precision version of the bubble concept as

an "Electrolytic Tilt Sensor." These units are one-piece

glass enclosures partially filled with an electrolyte and con-
structed with platinum terminals and contacts that form
two arms of an electrical circuit. Part of each arm includes

the electrolyte as a resistive element. As the sensor is tilted

and electrolyte flows from one side to another, the resis-
tance of one arm increases while the other decreases. This

change is sensed as a voltage change. The most precise

model covers the range of -t-1/2 deg with resolution of less

than 1 mdeg. A disadvantage for the present application

is that the high precision of the sensor is only available
when the inclinometer is mounted precisely "on top" of

the elevation axis. As the antenna is elevated, the sensor

rolls away from its preferred position, and the accuracy

decreases. It would be necessary to use the inclinometer

on a gimbal to achieve maximum resolution.

Inclinometers that use dielectric liquids as an integral

part of the device are also offered by Schaevitz. A change

in angle is measured as a change in capacitance between
two plates as the liquid flows to a new position between

the plates. The resolution is about 1 mdeg and null re-

peatability is 5 mdeg. The total angular range is -t-60 deg.

Inclinometers that use closed-loop force-rebalance lin-
ear accelerometers are available from a number of vendors.

For example, inclinometers with a resolution of 0.1 arc-
sec and a total range of -t-90 deg are offered by Schaevitz

and Sundstrand. The output offset at zero tilt can reach

50 mdeg for the 90 deg range and 2 mdeg when the range

is decreased to -t-1 deg.

E. Recommendations

Currently, the best mechanical gyroscopes outperform

the best optical gyroscopes. The single-degree-of-freedom

floated gyroscope and the electrostatically suspended gyro-

scope are both mechanical devices that appear capable of

satisfying the requirements for inertial pointing. However,

optical gyroscopes enjoy continued improvement through
intense development, and are expected to surpass the me-

chanical gyroscopes in performance in the near future. In

contrast, the mechanical devices represent a mature tech-

nology, and dramatic improvements in performance are
unlikely to occur. In anticipation of these future develop-

ments, ring-laser gyroscopes have been chosen in the base-

line for the inertial instrument. Optical gyroscopes poten-

tially have additional advantages over mechanical gyro-

scopes, including lower initial cost, greater reliability, and
immunity to vibration and gravity loading.

A number of force-rebalance accelerometers appear to

be capable of inertial pointing. These devices are rela-
tively inexpensive, off-the-shelf items. Stability of the ac-

celerometer parameters remains a concern since the ex-
tended Kalman filter is limited in its ability to estimate

rapidly changing instrument parameters. Another con-

cern is the level of hysteresis that might be encountered

during the course of antenna tracking. Vibration levels
on the antenna and electronic noise also have to be ad-

dressed. Even if some unforeseen difficulties rule out the

use of available force-rebalance accelerometers, the emerg-

ing vibrating-beam accelerometer, when it becomes avail-

able, should be a viable option.

Small-angle inclinometers of various types are available,

so no specific recommendation is made. There is a problem
that the inclinometers lose accuracy when rotated about
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their insensitive axes. This would occur, for example,
when the antenna elevation was changed. A solution to

this problem has been developed which involves mount-

ing the inclinometer on a simple single-axis pendulum-
stabilized platform.

V. Simulation Results

Simulations were conducted to illustrate the behavior

of the algorithms presented in the article and to predict

the performance of inertial instruments, given a set of rep-
resentative instrument parameters. The simulations were

written in Pro-Matlab by The Mathworks, a well-known

commercial software product that uses matrices as its fun-

damental data type, and were run on a Sun 3/60 desktop
workstation.

The gyroscope parameters used in the simulations were

previously given in Table 1, and the accelerometer param-

eters are summarized in Table 2. These instrument pa-

rameters are fictitious in the sense that they do not corre-

spond to any specific devices, but instead reflect "typical"
parameters for current or projected near-term state-of-the-

art devices, based on conversations with and data sheets

provided by the manufacturers. The purpose of the simu-

lations is to illustrate the feasibility of an inertial pointing
system, not to evaluate specific instruments.

The first two simulations, shown in Figs. 15 and 16, il-
lustrate the behavior of the extended Kalman filter which

is used to estimate the accelerometer parameters. For this

example, the antenna is rotated in elevation from horizon-

tal to vertical. The initial bias and gain errors were initial-

ized with a random-number generator which assigned them
values with standard deviations of 100 /_g and 100 ppm

rms. The two figures show that even with this level of ini-

tial error, the bias and gain parameters for this example

can be estimated with an accuracy much smaller than 1 _zg
following the antenna rotation.

Figure 17 illustrates the performance of tile elevation-
estimation algorithm that can be expected when the an-

tenna is tracking a target. It is assumed that the antenna

is located at the same latitude as the antenna complex

at Goldstone, and that the tracked object is inertially sta-

tionary and elevated 45 deg from the Earth's equator. The

tracking period is set at 10 hr. At the beginning of the

tracking period, the accelerometer bias and gain errors are

set to zero, reflecting the fact that these parameters are

initially known from the previous calibration using the ex-
tended Kalman filter. However, the accelerometer model

that was chosen allows random walk in the bias and gain

parameters. The extended Kalman filter successfldly esti-
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mates these parameters during target tracking, resulting

in elevation error smaller than about 2 prad (0.1 mdeg).
The results are impressive but it must be recognized that

several factors which would degrade the accuracy have
not been accounted for, including seismic vibrations, ac-

celerometer misalignments, nonlinearities, and electronic
noise.

Tile final two simulations shown in Figs. 18 and 19 il-
lustrate the tracking performance of the entire inertial in-

strument. Again the antenna is assumed to be located

at Goldstone, and the target is inertially stationary and

elevated 45 deg from the Earth's equator. Fig. 18 shows

the tracking performance in terms of boresight error when
only the gyroscopes are used to integrate attitude. The
nearly linear growth of error with time indicates that the

predominant source of error in this case is the rate-bias

error, which is typical of gyroscopes. In Fig. 19, the ac-

celerometer and inclinometer measurements were incorpo-

rated into the attitude determination using a minimum-
variance estimator to combine the outputs with those of
the gyroscopes and the extended Kalman filter to deter-
mine antenna elevation. The results demonstrate reduced

antenna boresight error, particularly during the middle of
the 10-hr tracking period when the antenna is closest to

vertical, and thus the elevation determination is nearly re-
dundant with the gyroscope output.

VI. Summary

A system using inertial instruments for pointing of the
Deep Space Network antennas has been described. The

proposed configuration includes a three-axis gyroscope,
four accelerometers, and an inclinometer in a strapdown
system. The system can be used both to initialize the

antenna pointing attitude and to track an object for pro-
longed periods of time.

The concept for initializing the gyroscopes requires de-
termination of the local gravity vector and the Earth's

spin axis in the antenna local coordinate frame. The grav-
ity vector is determined using the accelerometers to mea-

sure elevation angle and the inclinometer to measure cross-

axis elevation. An advanced algorithm employing both
a minimum-variance estimator and an extended Kahnan

filter is used to combine the measurements to determine

elevation angle, and also to estimate instrument parame-

ters, including biases and gains, while the instrument is in

operation. The Earth's spin axis is determined using the
gyroscopes, with the antenna held stationary.

Once the antenna attitude is known, it can be slewed to

a desired target and held there by using the gyroscopes to



integrateangularrateto obtainattitudeandusingknowl-
edgeof the localverticalto augmentthisestimate,again
combiningthemeasurementsin aminimum-varianceesti-
mator.

Tilearticlecontinueswithasurveyofavailablestate-of-
theart technology,andmakesrecommendationstowards
componentselection.In particular,thering-lasergyro-

scopeappearsattractiveasthecandidategyroscope,and
relativelyinexpensiveaccelerometersappearto fulfill tile
elevation-determinationrequirements.The articlecon-
eludeswithasamplingofthesimulationresultsillustrating
thefunctionsandperformanceof anidealizedinstrument
onaDSNantenna.Theresultsshowpointingperformance
closeto 1mdeg,indicatingthat thislevelof performance
maybepossible,thoughnot necessarilyeasyto achieve,
withall inertialinstrument.
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Table 1. Parameters used to slmulate gyroscope behavlor

Quantity Value Comment

Angle random walk

Drift uncertainty

(o.1)2 mdeg2/h_
0.1 mdeg/hr 0-p

Scale factor uncertainty 5 ppm

Resolution/noise 0.1 mdeg 0-p

Gaussian distributed error

Systematic error may be reduced

via parameter estimation

Systematic error may be reduced

via parameter estimation, but
error is small except during slew

Measurement error effect is reduced

by averaging data over time

Table 2. Accelerometer parameters used for simulating
elevation determlnatlon

Quantity Value

Accelerometer noise

Angle process noise

Bias process noise

Gain process noise

Time step used for simulation

(1.5 _g)2

(20 mdeg) 2/sec

(loo _g)2/lo hr
(100 ,g)_/10
10hr/4S0

91



FEED CONE --_

SUBREFLECTOR

MAIN

REFLECTOR

INSTRUMENTS

BEARING

EQUATORIAL

Z'
Z

0

+Z ACCELER

_yACCELEROMETERJ/

g = GRAVITY

Y

ANGLE

__- zYA;_I ELI ERR:MME ET;ERR

X, X'= ELEVATION AXIS
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developed dry rotor inertial reference unit (DRIRU II).
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Fig. 11. The Sagnac effect. Optical waves launched In the same

direction as the loop rotation require s longer time to complete a

revolution than do the counterpropagating waves.
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